A PLANETARY SCIENCE FIELD TRAINING AND RESEARCH PROGRAM AT THE ZUNI-BANDERA VOLCANIC FIELD, NM

Jacob Bleacher,
David Kring, Brent Garry,
Larry Crumpler

Inner Solar System Impact Processes
Center for Lunar Science and Exploration

Remote Sensing

Mapping

Modeling

NASA/GSFC/Arizona State University

BACKGROUND: ZUNI-BANDERA, NM

Figure 1. Geologic map of El Malpais and surrounding area, New Mexico.

LAVA FLOWS

SHEETS

- Tabular units
- Large surface areas
- Inflation
- Emplacement over low slopes

LAVA TEXTURES

- Flow textures:
 - 'a'ā
 - pāhoehoe
 - disrupted pāhoehoe

BACKGROUND: BASALTIC VOLCANOLOGY

Inflation

- Observed inflating lobes at flow fronts, HI
- Enables 10s cm thick flows to attain thicknesses of meters in days to weeks

McCARTYS, NM

- Tholeiitic basalts
 - Quartz normative near vent
 - Olivine normative away from vent
- 48 km
- 189 km2
- 7.9 km3
- ~ 3000 YBP
 - Cosmogenic
 - Radiocarbon
- Compound, tube-fed, pahoehoe flow field

PLATEAUS

MARGINS

- Steeply dipping plates
- Occasionally overturned
- > 10 m in relief based on DGPS measurements

CLEFTS

 Dipping margins and horizontal plateaus separated by deep cracks

Meters deep

PITS

- Vary from flat floored to conical
- Abrupt drop with overhanging roof to gradual increase in slope
- Floors covered in rubble, younger flows, or pre-flow surface

Lineated

- Parallel 10s cm grooves
- Aligned with flow direction
- Results form sheer during flow

Coils

 Also consistent with sheer zones within forming crust

Pahoehoe

- Pahoehoe ropes
- Also weathered away

Slabby/Rubbly

- Tilted plates, sometimes reverse imbricated
- ~10 cm thick
- Ropes and lineations present on upper slabs
- Disrupted original crust

Wedges

- Blade-like features located in base of inflation clefts and along base of upper crust in pits
- Sometimes display downward sagging
- Found commonly in pit walls and clefts

INTERIOR

- Massive core
- Vesicle Layers near crust (10s cm depth)
- Disconnects core from surface texture

PLATES

- Pre-inflation plates that rafted apart
- Plates typically separated by fields of lava balls or rougher textures

PLATE MARGINS

 Plates also bound by slabby texture (compression) or upwelled lava (tensile)

TEXTURE CHANGES

- Abrupt
- Not necessarily embayment
- No change of massive interior

Emplacement History

- Questions:
 - Did inflation occur at McCartys
 - Did pits form by inflation or collapse
 - Which features are characteristic vs. diagnostic
 - What was the flow pathway

BASIC SEQUENCE

- Initial sheet, development of original crust (lineations, coils, ropes)
- Continued flux into sheet disrupts surface crust and causes inflation (plates, slabby, rubbly, balls)
- Vesicles focused along base of crust
- Breakouts can feed new inflated lobes
- Most textures could form regardless of inflation
- Squeeze-outs are our diagnostic for inflation

PIT FORMATION

- Inflation pits display a sense of collapse
- Critical point is to determine if inflation has occurred in the flow field

PITS

- Overhanging roof and flat floors are not necessarily diagnostic features of :
 - Lava tubes
 - Volcanic caves

FLOW CONTACTS

- Flows were originally horizontal
- Working to differentiate between breakouts and uplifted embayment relationships

Field Conclusions

- Squeeze-outs diagnostic of inflation
- Plateaus, irregular pits, and terraced margins characteristic of inflation

Conclusions

- Inflation enables emplacement over long distances
- Occurs in all styles of basaltic terrain development
- Planetary inflation can be inferred from characteristic features
- Rough, slabby planetary lava flows not necessarily A'a flows

